
J .  Fluid Mech. (1975), vol. 67, part 3, p p .  417-443 

Printed in Great Bri tain 

417 

The macrodynamics of a-effect dynamos in 
rotating fluids 

By W. V. R. MAEKUS AND M. R. E. PROCTOR? 

Department of Mathematics, Massachusetts Institute of Technology, Cambridge 

(Received 7 November 1973 and in revised form 4 July 1974) 

Past study of the large-scale consequences of forced small-scale motions in 
electrically conducting fluids has led to the ‘a-effect’ dynamos. Various linear 
kinematic aspects of these dynamos have been explored, suggesting their value 
in the interpretation of observed planetary and stellar magnetic fields. However, 
large-scale magnetic fields with global boundary conditions can not be force 
free and in general will cause large-scale motions as they grow. I n  this paper the 
finite amplitude behaviour of global magnetic fields and the large-scale flows in- 
duced by them in rotating systems is investigated. In  general, viscous and ohmic 
dissipative mechanisms both play a role in determining the amplitude and 
structure of the ilows and magnetic fields which evolve. I n  circumstances where 
ohmic loss is the principal dissipation, it is found that determination of a geo- 
strophic flow is an essential part of the solution of the basic stability problem. 
Nonlinear aspects of the theory include flow amplitudes which are independent 
of the rotation and a total magnetic energy which is directly proportional to the 
rotation. Constant a is the simplest example exhibiting the various dynamic 
balances of this stabilizing mechanism for planetary dynamos. A detailed analysis 
is made for this case to determine the initial equilibrium of fields and flows in 
a rotating sphere. 

1. Introduction 
Many large-scale features of stellar and planetary magnetic fields may have 

their origin in rotational constraints acting directly on the large-scale flows, 
and may be insensitive to the detailed structure of the underlying small-scale 
motions responsible for magnetic regeneration. It is therefore instructive to 
investigate the effects of these constraints, and in this study an exploration is 
begun of the finite amplitude balance of large-scale fields and flows in a rotating 
sphere based on the ideas of ‘mean-field electrodynamics ’ (Steenbeck, Krause 
& Radler 1966; Krause & Steenbeck 1967; Steenbeck & Krause 1969a, b ;  
Radler 1968; for further references see Roberts & Stix 1971). This approach, 
which is related to earlier work by Parker (1 955) and Braginskii (1964), supposes 
that the magnetic and velocity fields in a conducting fluid exist on two widely 
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differing length scales, 1 and L, say, where 14 L. Then the induction equation 
for the large-scale or mean magnetic field B may be written as 

(1.1) aB/at = V A (U A B) + V A (U‘ A B‘) + hV2B, 

where U is the mean velocity and h the magnetic diffusivity of the fluid, and U‘ 
and B’ are the small-scale velocity and magnetic fields. The bar denotes an 
average over a volume large compared with P. The principal problem addressed 
in the past work has been to express the interaction term U’ A B’ in terms of the 
mean fields; a recent study by Moffatt (1970q b,  1972) supposes that the small- 
scale motions take the form of quasi-linear inertial waves and finds that to a 
first approximation 

(U’ A B’)i = aftjBi+ ..., (1.2) 

where a is constant and f i j  is a non-dimensional symmetric tensor function of 
position which depends on the spectrum of themean ‘helicity’ (= U‘. V A U‘) of 
the small-scale flow. Equation (1.2) is known as the ‘a-effect’. It can be shown 
that for a sufficiently large regeneration is possible. afii also depends, at finite 
amplitude, on B and U and in his 1972 paper Moffatt finds a finite amplitude 
equilibration (in a homogeneous unbounded medium) based on this dependence. 

An alternative mechanism which can restrict the growth of magnetic fields 
is the concomitant development of large-scale velocity fields. In  a bounded 
domain, such as the earth’s core, the growing magnetic field will give rise to 
large-scale Lorentz forces which in general are not irrotational. The dynamical 
equation for the large-scale flows in an incompressible rotating fluid is written as 

aU/at+ U .  VU - (,~p)-lB. VB + 2Q A U = - Vp + vV’U - V .  R +F, (1.3) 

where R is the Reynolds stress due to the small-scale fields, 8 is the angular 
velocity of the frame of reference, v is the kinematic viscosity, ,u is the magnetic 
permeability, p is the density, p is the effective pressure and F is an arbitrary 
large-scale body force. In  order to isolate the stabilizing mechanism proposed 
here, F and V .  R are chosen either equal or zero. Conditions permitting the 
latter choice are discussed in the conclusion. Hence we visualize an equilibration 
caused by an increased dissipation rate, primarily ohmic, and due to distortions 
of the magnetic field resulting from the induced velocity field. 

Geophysical observations suggest that the Coriolis and Lorentz forces in the 
core are of the same order of magnitude. It is assumed here that all the terms in 
the magnetic diffusion equation (1.1) are of the same order of magnitude and 
that the characteristic time is that for ohmic decay. The resulting scaled version 
of the dynamical equation (1.3) contains small terms representing the advection 
of momentum and viscous dissipation. When both of these small terms can be 
neglected, the necessary and sufficient condition for solutions of (1.3) is that 

where C(s)  is the cylinder of radius s inscribed in the domain coaxial with 8. 
This condition that there be no ‘geostrophic’ torques is due to Taylor (1963). 
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Here it leads to an unusual type of eigenvalue problem for the magnetic fields. 
The particular problem tackled in $92-4 was first formulated by Childress 
(1969) in a slightly different context and with a different aim in view. See pages 
424 and 428 below. 

Unfortunately it is not possible to neglect viscous effects a t  small field ampli- 
tudes. The initial equilibration of the growing magnetic field is due to the 
(small) viscous losses. The desirability of establishing the formal link between 
the ‘viscous regime’ (for which (1.4) is incorrect) and the ‘inviscid regime’ (for 
which (1.4) is central to the problem) was pointed out by a referee of a first draft 
of this manuscript. The behaviour of equilibrium solutions in the transition 
region between these two regimes has been resolved by one of us (M.R.E.P.) 
and is outlined in $ 5 of this paper. 

In  $ 2  we seek steady or periodic axisymmetric solutions to (1 .1)  and (1.3) in 
a sphere of radius L for an axisymmetric and isotropic fii (together with 

V.U = V.B = 0 

and boundary conditions appropriate to an external insulator). The system is 
supposed to be near to the state in which energy fed in from the small scales 
via the a-effect is only just enough to maintain the field, that is, near to the 
infinitesimal amplitude state in which a is the eigenvalue of a linear eigenvalue 
problem for given fii = f (r,  0) Sij. The nonlinear problem is then attacked by the 
methods of modified perturbation theory. The conditions for the neglect either 
of (1.4) (the ‘viscous’ limit) or of viscosity (the ‘inviscid’ limit) are set out, and 
in §$3 and 4 relationships between a and the field amplitude are found for each 
limit in the special case f = 1, for which the underlying eigenvalue problem is 
of well-known form. Section 4 concludes with a discussion of the novel eigenvalue 
probiem that arises for general fij in the inviscid limit, where a zonal flow has to 
be determined as part of the eigensolution. An evaluation is made of the impor- 
tance of these zonal flows in the published numerical studies of kinematic a- 
effect dynamos. The viscous-inviscid transition region is discussed in $5 .  I n  
the concluding section, $6,  the generality of the equilibration mechanism ex- 
plored here is assessed and work in progress is described. 

2. Formulation of the problem 
2.1. Xculing and decomposition of the equations 

We seek solutions of (1 .1)  and (1.3) in a sphere of radius L such that B is steady 
or oscillatory in time. 

Our first task is to adopt a scaling which makes Lorentz and Coriolis forces 
of the same order, in line with our discussion in $1. We also presume all the 
terms in (1.1) to be of the same order, so that L2/h is the characteristic time scale. 
These requirements lead to the unique non-dimensionalization 
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EM(aU/at+ U . V U )  + 2 k  A U = -Vp + B .VB + EV2U, 

aB/at = v A (u A B) +aV A (f. B) + V2B,  

V.U = V.B = 0 

for Irl 6 1. Here E = u/QL2 and EJ1 3 h/QL2 are the Ekman and ‘magnetic 
Ekman’ numbers of the large-scale processes. We suppose that h+m for the 
material outside the sphere, corresponding to an insulator. Then in this region 
U = 0 and V A B = 0,with U and B continuous across (r( = 1, and IBI = O( 11-1-3) 

as Irl+m. We have dropped the Reynolds stress and the large-scale forcing 
term that appear in (2.1). This is equivalent to supposing that 

IV. RI, IF1 < QA/L. 

( 2 . l a )  

(2 .Sb)  

(2 . lc)  

We discuss this supposition in the conclusion. 

E,, = 0 (10-7); see Roberts & Soward 1972). Hence Q-lEj$, the Alfven time 
scale of the system, is much smaller than the ohmic decay time Q-lEkl and so it 
seems reasonable to suppose that energy propagation via Alfven waves is 
effectively instantaneous. We therefore neglect the terms in E,,, which suppresses 
these waves, but makes the constraint (1.4) necessary for solutions to exist. 

Although the term in E is small almost everywhere, the question of the neglect 
of this term depends on whether the magnetic field amplitude is so large that 
the effect of the viscous boundary layers can be neglected in comparison with 
that of the Taylor constraint (1.4). This is a delicate question and will be dis- 
cussed further when the finite amplitude expansion has been developed. For the 
present, we place the EV2U term in brackets to  indicate that it may be neglected 
away from boundary layers. 

Before proceeding, we make t,he simplifying, but physically plausible assump- 
tion that fij is independent of q5, where q5 is the longitude in a spherical ( r ,  8,#)  
or cylindrical (2, s, 9) co-ordinate system with k defining the axis of symmetry. 
I n  addition, we shall restrict this exploration to  a study of axisymmetric solu- 
tions (but see the discussion in $3.1) so that the magnetic field may be split into 
poloidal and toroidal parts. Fdlowing Bullard CSC Geihnan (1964), we may write 
any solenoidal axisymmetric vector field Y as 

E ,  E ,  < 1 in all situations of int.erest (e.g. in the earth < E < 

y = +v A (Xs,), (2.2) 

where 6,  is the unit vector in the q5 direction. The first and second terms on the 
right-hand side are called the toroidal and poloidal parts of Y, respectively. 
Note that these two vectors are orthogonal. If we now write 

B = bCi,+V A (as,) and V A (U A B) = ds$+Vr\ (ce,) 

we may equate poloidal and toroidal parts in (2.Sb),  and ‘uncurl’ the poloidal 
equation since the electrostatic field - V@ has no q5 component. We then obtain 

(2.3) 
&/at = d + as, .V A [fV A (as,)] + D2b,, 

&/at = c + a f b + D2a, 
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where 0 2  = V2- l/s2 and we have made the analytically convenient simplifi- 
cation fij = faij, which we do not anticipate to have more than a qualitative 
effect on our results. We henceforward use these equations together with the 
equation for U, 

2 k A U  = - V p + B . V B + [ E V 2 U ] .  (2.4) 

2.2. The finite amplitude expa.nsion 

We now make use of the methods of modified perturbation theory (e.g. Malkus 
& Veronis 1958); that is, we suppose that the amplitude of the magnetic field is 
O(s)  I ,  and that Aa = a - a, = O(e) ,  where a, is the eigenvalue obtained as 
IBI --f 0. We then expand all quantities in powers of 6,  supposing that t = r/q, 
SO that a/at = qa/ar  (Veronis 1959): 

m 

x = c Px,, (2.5) 
n=O 

where x = B, U ,  a, b, C, d ,  a, q or p a.nd where b, = a, = B, = 0. We seek solutions 
proportional to ei7. We may then equate powers of s and solve a sequence of 
linear problems. The arbitrariness in s is removed by an appropriate normalization 
condition on b,; we set 

{b,+bT} = I,  {b,+b*} = E ,  (2.6) 

where curly brackets denote an integral over the sphere Irl < I and an asterisk 
denotes a complex conjugate; b,f is the adjoint of b, with respect to the linear 
operator Lo [see equat'ion (2.13) below]. b, is used as the basis of the expansion 
since it vanishes for Irl 2 1 as do all the bj. It is supposed, as seems reasonable, 
that the eigenfunction b, is unique (however, see the discussion in $3.1). The 
boundary conditions on aj  are 

D2aj = 0 for Irl 2 1, ai, aaj/8r continuous across Irl = 1, (2.7) 

so that any choice other than b, as a basis for the expansion would involve inte- 
grals over all space, whereas choosing b, ensures that integrals may be taken 
only over the domain of interest. We also note that (2.6) implies that 

{bfh?} = 0,  j =+ 1. 

We may now write down the problem sequencet 

2 k  A U, = - Vp, + [EV2U,], 

0 = - iq,a, + (U, A B,) . C, + a, fb, + D%,, 

0 = -iq,b,+VA ( U o ~ B l ) . C + + a o C + . V A  [for, (a16+)]+D2b,, 

(2.9a) 

(2.9b) 

( 2 . 9 ~ )  

and for j B 2 
j 

i= l  
2 k  A Uj = - V p  + Re ( Bi) . V Re (BjJ + [EV2Uj], (2.10a) 

t We note that U2N+1, a2N+1 and q2N+1 and B2N may be taken as zero without any loss of 
generality, since the nonlinearity of the equations is cubic, so that structure is added only 
a t  every other order in E .  
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i 

i=l 

i 

i= 1 

0 = (-iqj-iai  +ai-i f b i )  +cJ + (U, A Bj). 6,  +a, f b i  + D2aj + C.C. 

+ non-secular terms, (2.10b) 

0 = [ -iqj-ibc+aj-i6+.V A [fv A (ai6,)]] +d;+V A (Uo A Bi).6, 

+a, 6$ .  V A [ f V  A (aj C,)] + D2bj + C.C. + non-secular terms, 

where C.C. denotes the complex conjugate. There are further terms in the higher- 
order magnetic equations that do not have efiT time dependence and hence 
cannot give rise to any secularities; for the purpose of finding a*-, and qi-, we 
only need the parts of ai, b j  etc. which could give rise to secular behaviour. 

We have 
C; = ~.j-(UoABj).6+, 

d; = d j - V  A (U, A Bj) .6$, 

with cj and d j  given by (2.3). We first note that (2.9) constitutes an eigenvalue 
problem (a, and qo being t,he eigenvalues) for B,. The form of U, depends on the 
importance of viscosity in relation to the constraints on the field implied by the 
Taylor condition (see below, $2.3). We suppose that U, is known, and (2.9a) 
has the solution 

u, = V,(S)C$ (2.11) 

awayfrom boundarylayers, when the boundary conditions are taken into account. 
Hence 

c; = ci, d; = dj+G,(s)-, aa . G,(s) = sas d (--). V, 
az 

(2.12) 

Note that Ui for j 2 2 will consist of a part driven by Lorentz forces and a 
‘free’ part F(s) 6+ analogous to &(s) e$. 

We may now define the linear operator Lo (in principle a t  least). Equation 
(2.9b) may be used to express a, in terms of b, (this can be done more or less 
straightforwardly by means of Green’s functions). If the result is substituted 
into ( 2 . 9 ~ ) ’  we obtain the single linear integro-differential equation 

-&(b,) = 0, (2.13) 

where Lo = L,(a,,q,, G,(s)). In  the same way (2.11) becomes 

L,(bi) + Fj + C.C. = 0. (2.14) 

Fj is a combination of inhomogeneous terms, and we have retained only those 
parts of Fj and bi (and their complex conjugates) which have e f i r  dependence. 
All the terms in Fj are known except a+, and qj-, and we choose these to elimi- 
nate the secularities in (2.14). That is, if we define b,+ as the adjoint of b, with 
respect to Lo, so that 

( b t L 3 b ” ) )  = b{L$(bt))’I  

LO+(b,+) = 0, 1 b,+ cc ei7, 

then {b: L$(b!)) = 0. Now Fj + F% = FlecT + F!e-iT, so to eliminate the secularities 
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we multiply the ei7 equation by bl+* and the ecir equation by blf and integrate, 
so that 

{Fib;*} = {Fzb;} = 0, (2.15) 

and this fixes the unknowns and qj-l. It is now possible to solve for ai and 
b j  and continue the process. In  the event that qo =/= 0 and V, + 0,  the eigen- 
solutions will not be proportional to eir since V, = V,(7). However, when the eigen- 
solutions are known, a, etc. may still be found by a similar analysis. It is practical 
to carry through this programme only for a very restricted class off’s. Here, 
we shall complete the analysis in the special case f = 1, for which Lo is self- 
adjoint and takes a particularly simple form. When we have found a, and q j ,  
to any required level, we may invert the expansion €or a! in (2.5) and obtain a 
relation between E and Acc. 

2.3. The viscous and inviscid limits 

We now give a brief statement of the conditions for the neglect or otherwise of 
viscosity. The justification for these conditions is contained in $5, when the 
str’ucture of the finite amplitude problem has been made clear. 

(i) If E is bounded away from zero and E + O ,  so that s2E-4+0, then the 
effect of Ekman suction reduces y(s) to zero, so that only the driven part of U, 
remains (the ‘viscous limit ’). 

(ii) If B is bounded away from zero, and E is so small that c 2 E 4  < €2, then 
the effect on Uj of Ekman suction is unimportant compared with the require- 
ment that B . VB satisfies the Taylor condition (1.4) at all orders in E .  The free 
part y(s) of U, is determined by (1.4) a t  the j + 2  level (see $4;  the ‘inviscid’ 
limit). 

We treat case (i) in $ 3  and case (ii) in $4. (Although case (i) leads to easier 
mathematics, it seems that the region of 6, E space relevant in astrophysical 
contexts is that for which case (ii) is appropriate.) In  $5, the transition region 
between the two limits is investigated, and it is shown how the two limits are 
connected. The reader wishing to understand the equiIibration mechanism 
without becoming immersed in boundary-layer calculations may omit the last 
part of 3 3 and $ 5, since the remainder is self-contained. Note that it is necessary 
to consider the inviscid limit in order to justify the scaling and ordering, since 
our ordering implies that ohmic, and not viscous, dissipation is important in the 
final equilibrium. 

2.4. Discussion 

We must show, to justify the expansion scheme, that aj = O(1) for somej $- 1; 
we do this for the special case f = 1, which is the only one readily accessible to 
analytical methods, and contains most of the interesting physics. In $4, we 
discuss more general f ’s ,  since in the inviscid limit, the eigenvalue problem 
depends crucially on the parity off with respect to z = 0. We end this section 
with some consequences of the scaling and expansion which are independent of 
the form off. 
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(if The induced velocity fields have magnitudes @AIL), independent of Q. 
(ii) The magnetic energy is proportional to QA.  (This is in contrast to Moffatt’s 

(iii) The ratio of kinetic to magnetic energy is O(E,) < 1, so that the system 

These general consequences could, we hope, be used to provide some obser- 

(1972) equation (6.3), which gives a magnetic energy proportional to Q-9.) 

does not approach equipartition. 

vational corroboration (or otherwise) of the results that follow. 

3. Solution for the casef = 1 in the viscous limit 

For f = 1, the magnetic equations in (2.9) become 

3.1. The eigenvalue problem 

0 = - i p 0 ~ , + ~ , b 1 + D 2 ~ , ,  ‘1 Irl< 1, 
0 = - ip, b ,  - a,D2a, + B2b,,j 

with D2a, = b, = 0, Irl 2 1, and b,, a, and aa,/ar continuous across Irl = 1; 
lull = O(lr1-2) as Irl +a. U, is identically zero in the viscous limit. 

We seek solutions of (3.1) such that a, is a minimum. Our first remark is that 
the principle of exchange of stabilities is valid, as shown in appendix A, and 
we therefore set 4, = 0, and seek steady perturbations from a steady solution. 
However, there could exist lion-axisymmetric wavelike instabilities of the solu- 
tions; these waves would be akin to those discussed by Hide (1966), Malkus 
(1967) and Acheson (1972, 1972) and may be important in explaining the geo- 
magnetic secular variation. We do not discuss these waves here. 

We note that the rotation axis k does not enter the problem at this stage; 
we shall take the axis of symmetry of b, and a, t o  be kt  so that we may eliminate 
any c,6 dependence at finite amplitude. This eliminates the possibility that a 
tilted magnetic field may be preferred a t  finite amplitude (as observed in the 
earth), but a study of tilt is beyond the scope of this paper. 

Since p, = 0, the equations become 

and in this case we find that the operator Lo takes the very simple form 

Lo = D2+a& 

Lo is now self-adjoint, and we notice that the determination of a, and B, can 
be deferred until after the determination of b,. This problem has been solved 
by Childress (1969) and Krause & Steenbeck (1967); here we follow the treatment 
of the latter. 

The solutions for the lowest mode take the form 

-f This ensures that b, is unique to within a constant. 
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FIGURE I. The magnetic field B, from (3.3).  ___ , poloidal lines of force; 
_ _ _  , lines of toroidal field strength (after Hrause & Steenbeck). 

for Irl 2 1, b, = 0 and a, = ( - B/3r2)  J&a,) sin 0. a, is the smallest zero of Jg(x); 
equivalently 

a, = tana, E ? 4.49. 

Figure 1, from Krause & Steenbeck (1967), exhibits this solution. Because Lo 
is self-adjoint the problem for a, can be expressed in variational form; a: is the 
minimum of the functional 

P[bI = {IVbI2+ lbl2/s2}/{lbl2}>, (3.4) 

where b is any sufficiently well behaved’ function of r and 0 that vanishes a t  
r = 0,  1, as can be seen by manipulating {b(a,b +D2b)} and using the divergence 
theorem. We make use of this result in $4.  B is a normalization factor defined by 
(2.6) above, which is equivalent to {b:} = 1. Hence 

B2 = 3 ( 4 +  1)/4n-~a0~ if Js(x) = x-%sinx-x-*cosx 

= 1.13 ... . 

3.3. The determination of a2 

We have not had to concern ourselves with viscous effects up to now, since no 
velocities appear in the eigenvslue problem. Before we can proceed to finite 
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amplitude, however, we should take account of the effect of the EV2U term, 
which will lead to a thin layer of high shear adjacent to the boundary. Following 
Greenspan (1968), we suppose that all the fields can be split into interior and 
boundary-layer parts; that is, we set, for example, 

and similarly for Bi, etc., where O,, is a function of a boundary-layer co-ordinate 
5 = E-$( 1 - T ) ,  and Oii+ 0 as [+-a. These boundary-layer terms provide a 
transition from the inviscid boundary condition Ui . n = 0 to the viscous one 
Ui = 0 at [ = 0. The choice of E* as an expansion parameter is natural since the 
boundary layer is just a modified Ekman layer. (There is no magnetic diffusion 
layer since we are considering steady solutions, and the Hartmann number 
M = IB1 L/(pph)*  = E-* from the scaling of $ 2 ,  so the Hartmann thickness 
M-l and Ekman thickness are of the same order.) We anticipated this scaling in 
$ 2  when we discussed the viscous and inviscid limits. We also expand 

for eachj. 
We now have a two-parameter expansion scheme, in powers of e2 and E*, 

and it is clear that the ratio of these two quantities is of vital importance in 
determining the order in which we should tackle the higher-level equations. 
[When we are considering situations between the two extremes, a third parameter 
7 = e2EG becomes important, but there seems to be no point in further com- 
plicating the picture by introducing it a t  this stage, especially since it replaces 
one or other of c2 and E* when it is used. 7 is used in $ 5  to describe the balance 
between Ekman suction and Lorentz torques which prevails in intermediate 
ranges.] 

e2, the most important correction to a,, due to finite amplitude 
and/or viscosity should be a,,E*, but this is zero since B,  has no boundary- 
layer structure. (Clearly, B ,  has no velocities associated with it and hence has 
no reason to  be affected by viscosity.) The first change in a that might not be 
zero is azoe2; to find this, we need the relevant equations at order EO, which are 

2k A U2, = - V ~ 2 0  + B1,. VB,,, (3.6a) 

= c30 + OL20b10 + aoob31J -k D2a30, (3 .6b)  

( 3 . 6 ~ )  

mi = ai0 + E*aii + . . . 

VC7hen E* 

0 = d3, - a2,D2a,, - aooD2a3, + D2b30, 

where the term in E is now neglected. The boundary condition on U2, is 

U,, .n = 0 

(Greenspan 1968, p. 42). The boundary condition on b,, is b,, I T = ,  = 0 since (as 
will be shown below) 6,,(5) = O(b,, = b, as defined by (3.3), with a,, = a,). The 
equation analogous to (2.14) is 

= a00C30+d30+ 2a00a20b10fL0(b30)9 (3.7) 

where Lo = D2+01~~. Note that c;, = cjo and d;, = dj,  since U,, = 0. The solv- 
ability condition (2.15) can now be written as 
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It is an easy task to show that this expression in fact vanishes. We note that 
al, and b,, are even functions of z ,  and hence that BIOs is odd and BIOz is even. 
This in turn, using (3.6a), leads to the conclusion that UzOs is odd and UzOz and 
Uzo4 are even. We therefore finally arrive a t  the conclusion that ~ 3 0  = (U,, A Blo)$ 
and d,, G [V A (Uz0 A BlO)l4 are both odd functions of z, and hence that the 
integral in (3.8) vanishes. Unfortunately, although this argument is useful when 
the integrals are odd functions of z ,  it  tells us nothing about any integrals of 
even functions that may arise. Another and easier way to see that a,, = 0 is to  
make use of an identity which not only determines (3.8) but which will be essen- 
tial to the determination of a40. It is 

(bd )  = (CO"],  13.9) 

which holds for all a, b, c and d that satisfy (2.4) with inviscid boundary condi- 
tions and viscosity neglected. This is proved in appendix B. The importance of 
this identity is that no surface integral terms appear in it, as they would in the 
equivalent identity if the problem had been set up in terms of B, rather than b,. 
This is the advantage that the decomposition of 8 2 has over a vector formulation, 
since we shall be able to express a4, without the need to use cumbersome surface 
integrals of undetermined sign. Meanwhile we note that (3.9) implies that a t  

= @I0 - '30 D2a10} 

= (b10d30+aooblo~30) from (3.2), since cl0 = d,, = 0, 

and so the result a,, = 0 is simply recovered. 
The next coefficient, in the expansion of a that we should try to evaluate is 

a2,, since e2E3 % e4 in the limit considered. This will involve the solution of 
equations for the boundary-layer terms 6,, and B3, (B,, = 0, as we shall see), 
and so we must first determine U,,. 

3.3. The determination of U,, 
From (3.6) we have 

2k A U,, = - VP& + (V A Bio) A Blo, (3.10) 

where B,, . VB,, has been replaced by an alternative form, with a modification 
to the pressure. Taking the curl gives 

- 2aU,,/az = V A [(V A B,,) A B,,]. (3.11) 

From (3.2) and (3.3) we obtain 

where 

Note that B and C/a,, have the same sign. Hence a little manipulation gives 

V A B,, = a,,B,, - 2Ck, (3.12) 

C = -~Bao,J3(a,,) = ao,(12~)-*sgn (B)  = 0.73 ... . 

V A [(V A B,,) A B,,] = - V A (2Ck A B,,) 
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FIGURE 2. Poloidal streamlines of the flow U,,, from (3.13), caused by and limiting the 
amplitude of the magnetic field of figure 1. (Note that the toroidal part of U,,, which is 
driven by the field, is identical in structure with the toroidal part of Blo.) 

and so from (3.11) we finally obtain 

u,, = ( - C/a,,) v A B,, + C,V,,(s), (3.13) 

and this satisfies U,, . n = 0 on r = 1 as required. We take %,(s) = 0 since we 
are considering the viscous limit, in which Ekman suction dominates any effects 
of finite amplitude, as discussed in 5 2 .  

Figure 2 shows the poloidal part of U,, (the toroidal part of U,, is exactly 
the same in form as the toroidal part of B,, shown in figure 1) .  Childress (1969), 
who conducted a parallel study using dynamos with spatially periodic velocity 
fields and was the first to obtain this flow, noted that the toroidal flow is ‘west- 
ward’, that is, against the rotation, for any of the four possible solutions for B,, 
found by permuting the signs of B and a,,. This same independence of the parity 
of the solution persists in the case of generalf, and it is plausible that the direction 
of the flow is still ‘westward’, although this has not been proved. 

On r = 1, U,, = (0, Uze, 0)’ where 

U,, = - (3/47r)4 C sin 8. (3.14) 
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Before setting up the boundary-layer equations, we note that the Taylor integral 
c 

vanishes identically since (Blo.VBlo)~ is an odd function of z ,  and this means 
that, although we have not attempted to satisfy the Taylor condition, it is 
automatically satisfied to this order. 

3.4. T h e  boundary-layer equations and the determination of a,, 
The first non-trivial boundary-layer equations are 

2k A O,, = nap,,/a<+ i?2020/a<2, 1. 
- a(n. ~r,,)/a<+ n . v A (n A o,,) = 0, J 

(3.15) 

(3.16) 

- a(n. B3,)/a<+n. v A (n A B30)  = 0,) 

with boundary conditions U,, + o,, = 0 at < = 0 and B,, + B3, continuous 
across < = 0 (T = 1)  (cf. Greenspan 1968, chap. 2). We see that Bli = 0 since B, 
has no boundary-layer structure and also that the boundary-layer correction to 
B, is O(E4) owing to the large ohmic dissipation in the boundary-layer region. 
The solution to (3.15) does not involve the magnetic field and so is that given 
by Greenspan, viz. 

n A O , , + i ~ , ,  = -[nAU,,+i~2,],.=,exp[-(2i(n.k))~<], (3.17) 

where the square root has positive real part and n. k = cos 8. 
Since U,,+ 6,, = 0 on < = 0,  (3.15) and (3.17) give 

n . U,, = - Qn . V A { ( O , O ,  U2@) I cos el*} 
Jr =l 

(3.18) 

since U,, I,.=, = (0, Uze, 0) as in (3.14). Details of this analysis may be found in 
Greenspan (q.v.). 

Equations (3.16) give 

(3.19) 

and this leads to the boundary condition on b,, 

I cose 
b3,1 = -&,,I =-- (3.20) 

r = l  2 Icosep 
since b,, + g3, = 0 on r = 1. There are similar conditions on the other components 
of B,,, but they may be easily accommodated since the poloidal part of B,, is 
only determined to within a potential field and this can be varied to satisfy the 
new boundary conditions without a having to be changed. 
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The equations for U,, and B,, are 

(3.21) 

(3.22) 

0 = d3, - a,, D2a,, - a,, D2a,, + D2 b,, 

since B,, = 0;  the boundary conditions on these fields are given by (3.18) and 
(3.20). Then 

U,, = W(s)k 

is the solution for the velocity field, where W(s)  is determined by (3.18). We see, 
however, that since U,, and U,, are even functions of x we may ma,ke use of the 
parity arguments of 53.2 to show that a,, is not affected by this flow, just as 
az0 was not affected by U20. Hence the only contribution to must come from 
the effect of the boundary condition on b,,. If we ignore U,, and the fields it 

1 2k A U21 = - Vp21, V.  U21 = 0, 

0 = c31+ a,,b,o + aoob31f D2a31, 

drives, we have 

from (3.2). Hence 
= 2 a Z l a O 0  b10 + LO(b31) 

= 2 a 2 1 a 0 0 + ~ b 1 0 L 0 ( b 3 1 ) ~  

(3.23) 

and the quantity in brackets can be written as 

(3.24) 

where aV is the surface Irl = 1. The divergence theorem and the equation for 
b,, from (3.2) have been used. Equations (3.23), (3.24), (3.13) and (3.14) then 
imply that 

(3.25) 

and from (3.141, (3.20) and (3.25) with (3.3) then lead to the very simple ex- 
pression 

tczl = 4C2/7a, = 6.79 ... . (3.26) 

ab 
{b31L0(b10)]-/Jr7 b31$d8 = / J V  b(8) (' A B)f?dX, 

1 
0121 = 2G U,,b(4dfl  

/JF 

3.5. Discussion 

We have shown in this section that the first correction to a,, is O(s2Ea) and has 
the same sign as a,,. We would expect this since an increase in la1 implies an 
increase in the energy fed in from the small scales, and this energy is dissipated 
by viscosity. 

It is interesting to note that the expression (3.26) is identical to the value of 

(3.27) 

as may be verified from (3.17), where the term in brackets is (Pv4, the viscous 
dissipation due to the U,, field, to leading order in E3. Hence the relationship 
between a and s2 takes the form 

a = a,, + (s2/2ao,) @"4 + . . . . (3.28) 



Macrodynamics of a-efect dynamos 43 1 

The equality of the values of (3.27) and (3.25) is essential a t  this order since 
there is now a precise balance between the extra energy fed in from the small 
scales and the energy dissipated by viscosity a t  finite amplitude. There is no 
additional ohmic dissipation at  this level because of the field parities, and we 
have to go to O(e5) to find the first effects of field distortion. 

4. Solutions in the inviscid limit (Ek < E < 1) 

4. I .  The effect of Taylor’s condition 

We now suppose that as long as €2 Ef we may approximate the solution to the 
full equations by setting E = 0 and ignoring the effect of boundary layers. We 
shall show in the next section that this approximation is valid as far as we need 
to use it. The fact that restrictions must be placed on the relative magnitude of 
e and E is enough to show that the solution for E = 0 is not approached uni- 
formly for all e as E becomes small. However, we shall find that the regions of 
e, E space where such a limit is valid are the regions we would expect to be im- 
portant in the earth’s core. 

In the absence of boundary layers, the equation of motion (2.4) is subject to 
the Taylor consistency condition (1.4). For axisymmetric fields this can be 
written in the form 

P 

T ( s )  =_ J (B.VB),dz = 0, 
a s )  

since the q5 integration is trivial. The meaning of (4.1) is that there are some zonal 
Lorentz torques which cannot be balanced by Coriolis forces, and so certain 
restrictions must be placed on these torques so that they do not induce large 
fluid accelerations, violating the assumptions on which the derivation of (2.4) 
was based. It would seem that this extra constraint on B would overdetermine 
the problem, but this is not so since we may write the solution of (2.4) as 

[cf. (3.13)], where V ( s )  is a ‘free’ zonal flow which does not depend on the struc- 
ture of the Lorentz force, and so is free to be determined by the constraint (4.1). 
Thus, in principle, the velocity field (and hence the magnetic field) can be 
determined as that which leads to the satisfaction of (4.1). Unfortunately, we 
do not know of any algorithm for finding the solutions in a constructive manner, 
and so cannot prove either the existence or uniqueness of such solutions. We 
shall, however, exhibit solutions in certain special cases. 

We remark that from (4.1) and (4.2) it may easily be seen that 

{l?, V(S)  . (B . V B ) )  = 0, (4.3) 

in other words, the ‘free’ velocity field V(s)  makes no contribution to the energy 
balance, as we would expect since V ( s )  is not driven by the field. V(s)  can be 
regarded as satisfying a consistency condition equivalent to (4.1). 

One question remaining is that of how the fields attain a state in which (4.1) 
is satisfied. If we suppose that a magnetic field that does not satisfy (4.1) is 
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‘switched on’ in the field, the fluid will execute high frequency torsional oscil- 
lations on the time scale E~4Q2-l about a state in which (4.1) is satisfied; the 
term E,,aU/at becomes important on this time scale if IUI = O(Ej$). The time 
scale of these motions is of the order of the Alfvh  time scale, and the motions 
resemble torsional Alfvkn waves (Braginskii 1967; Roberts & Soward 1972). 
The waves will die away owing to  ohmic losses in the distorted fields, and 
owing to Ekman suction if some viscosity is present. If we are considering only 
steady solutions (and we shall see later in this section that the model we describe 
is far more likely to have steady solutions than oscillatory ones), then the ohmic 
loss mechanism is enough to ensure that a steady state exists. If we were to 
consider oscillating solutions with time scales of the order of the ohmic decay 
time, it would be necessary to invoke Ekman suction as the damping mechanism, 
since this damps the oscillations over the spin-up time E-hPl ,  which for most 
estimates of E is shorter than the ohmic decay time. For these reasons we shall 
therefore suppose henceforth that (4.1) is satisfied for all time. 

We are now in a position to solve the finite amplitude problem for f = 1, and 
this is done in the next subsection. The problem for general f, however, has 
many interesting features not found in the case considered and we discuss these 
in the final subsection. 

4.2. The eigenvalue problem for f = 1 

From (2.9) and (2.11) we obtain 

1. (4.4) 
q, aa,/aT = a, b, + ~ a , ,  

4, ab#T = - G,(s) aa,/az - a , ~ 2 ~ ,  + ~ b , ,  j 
where Go(s) = ~ d [ s - ~ ~ ( s ) ] / d s  and U ,  = &,V,(s), together with the Taylor condi- 
tion 

Equations (4.4) and (4.5), together with the boundary conditions on a, and b,, 
which are the same as in 3 3, constitute an eigenvalue problem in which not only 
qo and a, but also V,(s) must be determined as part of the eigensolution. In  the 
case of general f, this is next to impossible to solve, but in the case f = 1 it is 
trivial. If we assume that the lowest eigenvalue occurs for qo = 0, as seems 
likely, we have the following. 

(i) A consistent solution exists for Go(s) = 0; for in the absence of Go(s), the 
solution is identical to that in 3 3, and we have shown by parity arguments that 
(4.5) is satisfied for this solution. 

(ii) If GJs) $0,  then parity considerations show that the solution could have 
no definite parity about z = 0, since if it did, the term in G,(s) would be of 
different parity to all the others. 

(iii) Any eigenvalue for a steady solution with G,(s) $ 0 would be greater 
than the a, defined by (3.3); for (4.1) may be integrated by parts to obtain the 
equivalent form (Childress 1969) 
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Hence (4.5) can be written as 

If this is used and we repeat the analysis of appendix A then it is easy to show 
that the real part of equation (A7) remains unaltered, and so 

af = ( I V b , ~ 2 + ~ ] / { l b , 1 2 } .  

It is clear from this equation and (3.4) that the minimum value of a: for a steady 
solution must be obtained from the solution to (3 .2) .  It also seems most plausible 
that qo = 0 for all possible solutions, though we have not proved this. 

So in this case the eigenvalue problem is identical with that in $3, and so we 
may take over all the results proved there up to and including the determination 
of a2, = a,. (We shall drop the second suffixes in this section, since we have 
neglected the effect of viscosity.) 

4.3. The determinationof a4 

Since a, = 0 we must go to a4 to find the closure of the equations. The analogues 
of (3.6) are 

(4.9) 

(4.10) T4(s) = (B, .VB,+B3.VBl)+dz = 0. 

We note that, since b3 has opposite parity to b, from (3.7) and (3.8), this integral 
is not trivial. It is used to determine the part of U, which is Ieft undetermined 
by the equation of motion as discussed earlier in this section; the driven part of 
U,, is the same as that in 93. (Note that (3.9) remains true whatever V,(s) is, 
and therefore the result a, = 0 still stands.) The equation analogous to (3.7) is 

0 = aoc5+d5+ 2a4@-ob,+LO(b,) 

1 
3kAU4 = - V P ~ + B ~ . V B ~ + B ~ . V B ~ ,  

0 = c5+a4b1+a,b5+D2a5, 

0 = d, - a4 D2al - a, D2a, + D2b,, 

and we most now satisfy the Taylor constraint 

So., 

(4. I I) 

and so the solvability condition (2.15) becomes 

a4 = ( - 2aO)-1 {b1(aOc5 f d 5 ) } ,  

the appropriate part of the identity (3.9) becomes 

(4.12) 

{bid5 - D2aic,} + {b,d3 - D2a3c3} = 0 (4.13) 

and after some manipulation, using (3.6) and (3.2), we find that 

{ b 1 ( a 0 c 5 f d 5 ) )  = - {b3 (a0c3+d3) ) - { c i )  

= - [{cf}-a:{bi}+{lVb312+ lb312/s2)]. 
28 F L M  67 
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S 

FIGURE 3. The ‘free’ zonal flow J;(s) as a function of s; the undetermined solid-body 
rot’ation in T;(s) has been chosen to  vanish at s = 1, in accorclanco with the results of $ 5 .  

So we finally obtain 

a4 = (2a,)-‘[{c:)-a~{b~}$.(IVb,l2+ Ib,[2/s2)I, (4.14) 

and this expression is positive definite from (3.4). Note that we do not have to 
find U, to determine a4. 

Here, finally, is the result anticipated in the introduction: a brake on the 
growth of the field due to ohmic dissipation, since the terms in b, are representative 
of the added loss due to distortion of the b, field, which is the most efficient 
configuration for transforming the energy of the small scales to energy of the 
large scales through the term in a. The {c:} term is representative of the ‘back 
e.m.f.’s’ which arise in response to the growth of the velocity field. 

We should remark that the b, of this section is not the b,, of $3, since the U, 
field is modified by the need to satisfy (4.10). We have found no way to obtain 
h(s), the free part of U,, analytically, the main difficulty being that the constraint 
(4.10) is over cylindrical surfaces, whereas because of the boundary conditions 
the problem is only separable in spherical polars. However, it  has proved possi- 
ble, by expanding in eigenfunctions of the problem for b,, to find the form of 
V,(s) by a fairly straightforward numerical iteration procedure, the details of 
which will appear elsewhere. We give the resulting form for &(s) in figure 3. 
Note that the flow is ‘eastwards’, opposite to the driven part of the toroidal flow. 
This is to be expected since the velocity field will draw out the toroidal part of 
the magnetic field, and we would perhaps expect that (4.10) can only be satisfied 
if the ‘pulling out’ is not all of one sign. Because the # component of the driven 
part of U, is zero at  r = 1, see (3.14), this means that at  the surface of the 
core the flow is eastwards, but that in the interior the flow is westwards near the 
equator and eastwards near the poles. 

Although there does not seem to be much point in calculating the exact value 
of a4, since its analytical form is much more revealing, it is certainly positive, 
and O( 1). We have therefore justified the scaling and ordering of 8 2 by showing 
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explicitly that, for e2 sufficiently large compared with Ef, the energy balance is 
determined primarily by ohmic rather than viscous dissipation. Had all the ajo 
turned out to be zero, we would have had to revise our scaling to make viscous 
dissipation the important mechanism. 

4.4. Discussion 

We conclude this section with some remarks on the structure of the problem in 
the inviscid limit for general f. If we suppose that f is either odd or even, which is 
plausible bearing in mind the likely symmetries of the earth’s core about the 
equator and the probable importance of Q in the production of the a-effect, 
then marked differences arise between the two cases. 

Case 1. f even. In  this case it is easy to show from the equations for the eigen- 
value problem [cf. (2.9) and (4.4)] 

qo aa,/a.r = a. f b, + D2a,, (4.15a) 

q,ab,/a7 = - G,(s) aa,/az +ao G+.  V A [fV A (al &,)I + D2b, (4.15b) 

and parity arguments similar to those used in 993 and 4.2 that, if a solution is 
sought for which a,, say, has definite parity, then b, has the same parity and 
(4.5) is automatically satisfied if and only if G,(s) = 0. Since it is most likely that 
the lowest eigenvalue a, will be obtained for a solution having definite parity, 
we have the situation that for evenf the eigenvalue problems in the viscous and 
inviscid limits are identical. Further application of these arguments shows that 
since bl+ will have the same parity as b,, and c3 and d, will have opposite parity, 
a2 will vanish to leading order in E*, just as in the f = 1 case. An extension of 
this argument shows that as = al0 = ... = 0 and that the only non-trivial 
Taylor integrals occur a t  orders e4, 19, etc., so that the ‘free’ parts of the Uj 
have to be determined only at j = 3,6, etc. Furthermore, the fields at  successive 
orders in e2 alternate in parity, so that the finite amplitude field has no symmetries 
about the equator. 

Ca,se 2. f odd. In  this case a, and b, have opposite parities [from (4.14)] and 
G,(s) $ 0  in general, since (4.5) is not trivially satisfied. Hence the eigenvalue 
problems in the two limits are very different. In this case az0 will not be zero in 
general, and the free part of Uj has to be determined for allj,  since none of the 
Taylor integrals are trivial. Further, all the b j  have the same parity as b,, etc. 
and so the finite amplitude field will have the same symmetries as the infinitesimal 
amplitude field. 

These differences are very striking, and should help to provide evidence for 
or against even or odd f ’ s  in the earth or sun. It is far more likely that f is odd, 
and Roberts (1972), in his comprehensive numerical study of a-effect dynamos, 
always uses an f that is odd, but does not require his solutions to satisfy (4.5). 
His results, we think, need reappraisal in the light of the foregoing discussion. 
It seems that the eigenvalues he obtains are too low, since the additional con- 
straint (4.5) would tend to increase the ohmic dissipation since it would add 
structure to the field, and so a higher energy input (via the a term) would be 

20-2 
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required. A numerical study of the effects of (4.5) on Roberts’ results is in 
progress. 

Roberts found that all his solutions for as-dynamos (of the type studied here, 
in which no large-scale motions are prescribed) had steady eigensolutions, and 
we expect the same to be true even for non-zero G,(s), since we have already 
shown that the term in G,(s) does not contribute to the energy transfer (4.3), 
and so cannot replace the term in a, in (4,15b), as a source of energy. So the 
system is still basically an a,-dynamo, and we expect steady eigensolutions, 
although no general proof of marginal stability exists as yet. 

We have now elucidated the finite amplitude effects on the problem in the 
two extremes @-+ 0 and €2 9 Ei. We now turn to  a brief exposition of the situa- 
tion between these two extremes. 

5. The transition region 
5.1. Preamble 

We have seen that in $ 3  the free part of the velocity field V ( s )  was taken to be 
zero owing to Ekman suction, and in $4 the Taylor condition T ( s )  = 0 was 
assumed to be satisfied. Since in general both these requirements are impossible 
to fulfil, we would expect that the situation in intermediate ranges of e,  E space 
is characterized by a balance between Ekman suction and the effect of the 
magnetic field through the Taylor condition, as the system attempts to satisfy 
both a t  once. I n  this section we attempt to describe this balance for general f in 
the two cases Ef $ e2 > E: and EB 9 e2 where the solution is ‘near ’ the inviscid 
and viscous limits respectively. The case f = 1 is then described by reference to 
the general treatment. Following the discussion in $4, we shall for simplicity 
consider only steady solutions. 

5.2. Case 1. e2 < Eg < 1 

If we expand all fields in powers of c2 and E* as in $3, we obtain in the interior 

8k A Uo, = - Vpoo, 

2k A U,, = - Vpz0 + B,, . VB,, + F, 

2k A U01 = - Vpo1- F‘, (5.3) 

(5.4) V.U,, = v.u,, = v.u,, = 0 

and in the boundary layers 

2k A o,, = napO1/a5+ a2~oo/ag2, 1 
- a ( n . ~ , , ) / a g + n . ~ ~  (nr\ Doe) = 0.1 

U,, and U,, obey inviscid boundary conditions (cf. $3) .  F and F’ are undefined 
for the present. The boundary condition on U,, is found from the boundary- 
layer equations to be 

(5.5) 
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where U,, = S,&,(s) as in (2.11). The analysis required to obtain this is identical 
with that for (3.17) and (3.18) and can be found in Greenspan (1968, q.v.). 
Note that the right-hand side of (5.6) is an even function of z. 

Two difficulties now become apparent. If we supposed that F = F' = 0 then 
(i) the Taylor condition in the equation for U,, would not be satisfied in general 
and (ii) no solutions to (5.3) would exist. For the general solution to (5.3) with 
F' = 0 is 

and this would give U,,.n 
with (5.6). 

Taylor condition for (5.3) is satisfied, i.e. choose 

as an odd function of z, which is incompatible 

I n  order to solve both these problems a t  once, let us choose F so that the 

I I- 

We must then take F' = TJF, where TJ = e 2 E f ,  as can be seen by consideration 
of the relative orders of magnitude of (5.2) and (5.3). Note that y Q 1. The 
general solution to (5.3) and (5.4) compatible with (5.6) is, from Greenspan 
(1968, p. 47)) 

and substituting this in (5.6) leads to the relation 

uol = + y v  A [&T(s)  6,] + &(S) G6 (5.9) 

n 

&,(s) = +TJ( I - s2)*J (B,,. VB,,),dz. 
C(S) 

(5.10) 

This is the fundamental relationship between the Lorentz forces and Ekman 
suction that is required.? It is now clear that a t  zeroth order in 7 we have the 
viscous solution as before, and that all the quantities should be expanded in 
powers of TJ as well as e2 and E* (the expansion in e2 becomes redundant except 
for the odd E'S in the magnetic equations). I n  the general-f case a can be 
written as 

a = CL,, + 7"' + E&ao1 + yE*a,, + . . ., (5.11) 

and clearly the leading correction to a is T J ~ ,  since a,, must be zero (without any 
finite amplitude effects there can be no velocity field, and so no viscous effects). 

5.3. Case 2. Eh 4 e2 < 1 

In  this region we would expect solutions 'near to '  the inviscid solutions of $4, 
and so would expect the Taylor condition to be nearly satisfied rather than U,, 
to  be nearlyzero. We may makeuse of all the equations in 9 5.2, with the difference 
that the small parameter is now 7-l = c 2 E &  instead of TJ, and that boundary- 
layer effects provide a small correction to finite amplitude effects instead of the 
other way round. All the analysis goes through just as before and we obtain 

(5.12) 

t This expression should be compared with the one derived by Tough & Roberts (1968) 
in connexion with the magnetohydrodynamic Braginskii dynamo. 
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which is now an expression for small deviations from zero of the Taylor condition. 
To f i s t  order in q-l, we may take V,,(s) as the value obtained if viscosity is 
negligible. (Incidentally, it  is clear from (5.12) that V,,(s) must tend to zero as 
s -+ 1 .) We are able to ensure that this is the case since V,,(s) is only determined up 
to a solid-body rotation by the eigenvalue equations (2.9). So in this region it is 
appropriate to introduce 7-1 as another expansion parameter and the leading 
terms in the expansion for a become 

a = ainv +?/+a” + €2az0 + €27-lao1 + . . . , (5.13) 

and clearly the term in 7-1 will be the most important if and only if 7-1 €2, 

i.e. s2 < E2. If €2 > E&, we have the inviscid limit of 332 and 4, in which viscosity 
can be neglected. It is important to note that the ainv of (5.13) is the inviscid 
eigenvalue and is therefore not the same as the alo in (5.11). Since the viscous 
eigenvalue is likely to be much less than the inviscid one (since the inviscid 
eigensolution will have more structure; this was discussed in 5 4), we expect that 
a‘ and a” are, respectively, positive and negative. 

5.4. Solution for f = 1 

I f f  = 1 (or, indeed, iff is any even function of z ) ,  then the eigenvalue problem 
is unaffected by the effects of finite amplitude or viscosity, and so there will be 
no O(7)  or O(7-1) corrections to the solutions. The appropriate expansion for a 
will therefore be 

a = aoo + €2qaf + €2Eiaz, + . . . (5.14) 
for 7 < 1, and 

a = aoo + s27-1af’ + + . . . (5.15) 
for 7-1 < 1. 

However, it is an easy matter to show that a’ and a” vanish from parity argu- 
ments and so the conditions for 7 and 7-l to be important are, respectively, 

and 
7 2  9 E*, i.e. e2 9 EZ (and e2 < E*), (5.16) 

7-2 9 €2, i.e. €2 < E* (and e2 9 E i ) ,  (5.17) 

which shows that the conditions given in $2  for the viscous and inviscid limits 
to hold are sufficient, but not necessary, in the particular case f even. However, 
the discussion given in the previous two subsections shows that the conditions 
are necessary and sufficient in the general case. 

5.5.  Discussion 

We have now shown how the conditions stated in $ 2  arise and have provided 
a means for bridging the gap between the two limits of $33 and 4. Quantitative 
results are hard to obtain because, as in $4, there is a cylindrical constraint to be 
satisfied with spherical boundary conditions. However, we are now in a position 
to show how a depends on 8, and this is shown in figure 4 (general-f case) and 
figure 5 (constant-f case). Figure 6 shows the different regions of 8, E space 
that have been described. 
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a 

FIGURE 4. The relationship between the magnetic energy (oc c2) and Aa G a - a,, for general 
f. Here zoo is taken as the ‘viscous’ eigenvalue, with ahV as the ‘inviscid’ eigenvalue. 

We wouldexpect that the earth’s Field is in the ‘ inviscid’ regime of $4, for obser- 
vations of fields within the earth’s core lead to the conclusion that e = O(i0-1) 
a t  least, whereas E = O(iO-14), and so e2 $ Ea. Hence we have shown that the 
primary factor inhibiting the growth of the magnetic field is ohmic dissipation, 
as anticipated in the scaling. 

6. Conclusion 
In  previous sections, we have shown that a finite amplitude equilibration of 

a field driven by the a-effect can occur owing to large-scale velocity fields in the 
domain. The principal dissipation mechanism is found to be ohmic loss except 
at  very small field amplitudes where viscous dissipation is also important. In 
this respect, the system resembles an unloaded electric motor. The as-dynamo 
that we have chosen as a basis for the analysis has several shortcomings as a 
model for the generation of the earth’s and sun’s magnetic fields; the lack of 
oscillatory solutions, in particular, makes it irrelevant to the sun. However, we 
anticipate that if a similar analysis were applied to the more appropriate aw- 
dynamo (in which a prescribed differential rotation, instead of the a-effect, 
causes the production of toroidal from poloidal field) then the same type of 
equilibration would occur. 

Two remaining questions concern the neglect of the V. R and F terms in (i.3), 
and the suppression of the dependence of af on the large-scale fields. We have 
left out the term in F to simplify the model; we could equally have included it 
and considered the resulting oIw-dynamo, with essentially the same conclusions. 
Neglect of V .  R can only be justified by reference to a particular small-scale 
process. However, using the estimates in Moffatt (1972), weIfind that 

IV.RI II lu0l2/L N 0*005QZh/L, 
where the small-scale motions have speeds 21 luol, so that V .  R can certainly 
be neglected in this case. 
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Aa 

FIGURE 5 .  The relationship between the magnetic energy (a 6*) and Aa “-aoo for 
f = 1 (and, by extension, for general even f ) .  Note that the ‘viscous’ and ‘inviscid’ eigen- 
values are the same in this case. 

E* 

FIGURE 6. The various regions in E ,  E space considered in $32-5. (i) 1 % e2 % E%: inviscid 
region. (ii) E& % ez % E4: transition region for general f; inviscid region for even f. 
(iii) E+ EP : transition region. (iv) 1 % EP >> €2: transition region for general f ;  
viscous region for even f. Note that e2 must tend to zero in the viscous limit for generalf. 

€2 
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The same considerations apply to the investrigation of the relative importance 
of the equilibration mechanism found in this paper and that of a f reduction due 
to changes in the small-scale fields as B and U increase.? If we again consider 
Moffatt’s (1972) process, we find that the relative importance of the two mecha- 
nisms depends crucially on the spectrum of the small-scale velocity field; in 
general, it  seems that both mechanisms can be important, depending on the 
region of parameter space being considered. However, the observed magnitude 
of the geomagnetic field (Roberts & Soward 1972) strongly suggests the magneto- 
strophic equilibration described in this paper. 

One of the most intriguing aspects of this study is the novel eigenvalue problem 
outlined in $4. A necessary part of the eigensolution is the determination of a 
zonal flow which will prevent the growth of any magnetic fields causing zonal 
torques. This ‘eigenflow’ is independent of e and hence of Aa. Unfortunately, 
it is difficult to obtain analytic solutions for non-trivial f ’ s ,  although in an in- 
geneous approach to the problems raised in $ 4  (Greenspan 1974), solutions have 
been found for f ’ s  which are non-zero only in thin shells. A study is now in pro- 
gress which will include the Taylor condition within a numerical method for 
solving the eigenvalue problem for general f,  and this will hopefully show to 
what extent the results of Roberts (1972) and others need reappraising and in 
particular how their criteria for time-independent solutions for aw-dynamos 
are affected. 

Support of the National Science Foundation under Grant GA-40594 is grate- 
fully acknowledged by W. V. R. Malkus. M. R. E. Proctor wishes to thank the 
Kennedy Memorial Trust for a year’s scholarship at MIT. 

Appendix A. Proof of the principle of exchange of stabilities for (3.1) 
If we take (3.1) and its complex conjugate 

1 0 = iq*a: +a& +DZa;, 

o = iq,b: - a , ~ z a ;  + ~ z b ; ,  J 
(qo is real for neutrally stable solutions), then 
integral relations 

for Irl < 1 (A 1) 

we may easily obtain the three 

Now from the equation for a, for Irl 2 1, D2a, = 0, we can show that for Irl 2 i 

t Rudiger (1973) has recently investigated the equilibration due to this mechanism. 
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This implies that 
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where 

1% = IJl. [ P ~ ( C O S  e ) ] ~  

and av is the surface of the sphere. Note that the expression (A 4) is real and 
negative for any set of A"s. 

Hence, since a, and aa,/ar are continuous across (r( = 1, the same expressioii 
holds for the interior fields, and we may write 

using the divergence theorem, and the surface integral is real and negative. 
Since also 

{b,D%?} = - {IVb,12+ Jb,l2/82} (A 6) 

by similar reasoning, since b, = 0 on (r/  = 1, we may combine (A 2), (A 5 )  and 
(A 6) to obtain 

and since the coefficient of iq, is real and positive, we conclude that qo = 0, i.e. 
that the principle of exchange of stabilities is valid. 

Appendix B. Proof of the identity (3.9) 
We may write 

{B .VA(UAB)}  = (B.(B.VU)}-{B.(U.VB)). (B 1) 

The second term on the right-hand side can be written as -{V.(U(gB.B))} 
and this is zero by the divergence theorem since U . n = 0 on I rl = 1.  The first 
term on the right-hand side becomes 

sdv 

where aV is the sphere ]rJ = 1, and the first term vanishes from (2.1), since we 
suppose E = 0. The second term becomes 

- (U. (B .VB)} + (U. B) B .ndS, (B 2) 

jJvBeBruedS (B 3) 

since B4 = U, = 0 on Irl = 1. NOW, the left-hand side of (B 1) can be written as 

{[be+ + V A (at+)]. [de, + V A (cG+)]) (B 4) 
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and this can be transformed to give 

{bd - CD2a}-/aF,CB8d8. 

Since c = q B 8 -  U,B,, we have 

( B . V / \ ( U r \ B ) ) ~ ( ( b d - c D 2 a ) +  B,'C&B,dh' 
S d Y  

and hence, from (B 3),  {bd - cD2a} = 0, as required. 
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